
RPI
https://www.raspberrypi.org/documentation/usage/gpio/

https://pi4j.com/1.2/pins/model-b-rev2.html

https://www.raspberrypi.org/documentation/usage/gpio/
https://pi4j.com/1.2/pins/model-b-rev2.html

RPI 2B

RPI 4B
https://spellfoundry.com/2016/05/29/configuring-gpio-serial-port-raspbian-jessie-including-pi-3-4/

https://spellfoundry.com/2016/05/29/configuring-gpio-serial-port-raspbian-jessie-including-pi-3-4/

http://0pointer.de/blog/projects/serial-console.html

root@raspberrypi:/home/pi# systemctl enable serial-getty@ttyAMA0.service
The unit files have no installation config (WantedBy=, RequiredBy=, Also=,
Alias= settings in the [Install] section, and DefaultInstance= for template
units). This means they are not meant to be enabled using systemctl.

Possible reasons for having this kind of units are:
• A unit may be statically enabled by being symlinked from another unit's
 .wants/ or .requires/ directory.
• A unit's purpose may be to act as a helper for some other unit which has
 a requirement dependency on it.
• A unit may be started when needed via activation (socket, path, timer,
 D-Bus, udev, scripted systemctl call, ...).
• In case of template units, the unit is meant to be enabled with some

 instance name specified.

Systemd Enable Serial Port on RPI

root@raspberrypi:/home/pi# systemctl start serial-getty@ttyAMA0.service

root@raspberrypi:/home/pi# cat /boot/cmdline.txt
dwc_otg.lpm_enable=0 console=ttyAMA0,115200 console=tty1 root=/dev/nfs
rootfstype=nfs nfsroot=192.168.40.40:/opt/remote/nfsroot/raspberry2,tcp,vers=4
smsc95xx.turbo_mode=N ip=dhcp elevator=deadline fsck.repair=no rootwait

systemctl enable serial-getty@ttyAMA0.service
systemctl start serial-getty@ttyAMA0.service

cp /usr/lib/systemd/system/serial-getty@.service /etc/systemd/system/serial-
getty@ttyAMA0.service
vi /etc/systemd/system/serial-getty@ttyAMA0.service
 now make your changes to the agetty command line ...
ln -s /etc/systemd/system/serial-getty@ttyAMA0.service
/etc/systemd/system/getty.target.wants/
systemctl daemon-reload
systemctl start serial-getty@ttyAMA0.service

pi@r+---+
pi@r| A - Serial Device : /dev/ttyS1 |
pi@r| B - Lockfile Location : /var/lock |
pi@r| C - Callin Program : |
pi@r| D - Callout Program : |
pi@r| E - Bps/Par/Bits : 115200 8N1 |
pi@r| F - Hardware Flow Control : No |
pi@r| G - Software Flow Control : No |
pi@r| |
pi@r| Change which setting? |
pi@r+---+

https://spellfoundry.com/2016/05/29/configuring-gpio-serial-port-raspbian-
jessie-including-pi-3-4/
https://elinux.org/RPi_Serial_Connection

https://elinux.org/RPi_Serial_Connection
https://spellfoundry.com/2016/05/29/configuring-gpio-serial-port-raspbian-jessie-including-pi-3-4/
https://spellfoundry.com/2016/05/29/configuring-gpio-serial-port-raspbian-jessie-including-pi-3-4/
mailto:serial-getty@ttyAMA0.service

https://www.rogerirwin.co.nz/linux-open-source/enabling-a-serial-port-console/

Using the serial port to login is a good way to get access to a device that
doesn't have a network connection. This could be a small embedded Linux
computer.

Raspberry Pi
enable_uart=1

On a Raspberry Pi you can edit /boot/config.txt and add this at the bottom. Then reboot. More
details can be found here.

Linux devices with systemd
sudo nano /lib/systemd/system/serial-getty@.service

First we need to edit the serial-getty service to set the correct bard rate.

Edit this line
ExecStart=-/sbin/agetty --keep-baud 115200,38400,9600 %I $TERM
To This
ExecStart=-/sbin/agetty 115200 %I $TERM

Set this to the bard rate that you wish to use. This should be the same at the computer is using at the
other end.

systemctl daemon-reload
For a USB serial adaptor
systemctl enable serial-getty@ttyUSB0.service
For a built in serial port /dev/ttyS0
systemctl enable serial-getty@ttyS0.service

You can now log in using the serial console on /dev/ttyUSB0 or /dev/ttyS0

1. Connect another computer to it using a NULL modem cable.
2. Then open a terminal emulator such as minicom.
3. Set the baud rate and port.
4. Press enter a few times and you should then see a login prompt.

systemd for Administrators, Part XVI

Gettys on Serial Consoles (and Elsewhere)

TL;DR: To make use of a serial console, just use console=ttyS0 on the kernel command line,
and systemd will automatically start a getty on it for you.

While physical RS232 serial ports have become exotic in today's PCs they play an important role in
modern servers and embedded hardware. They provide a relatively robust and minimalistic way to
access the console of your device, that works even when the network is hosed, or the primary UI is
unresponsive. VMs frequently emulate a serial port as well.

Of course, Linux has always had good support for serial consoles, but with systemd we tried to
make serial console support even simpler to use. In the following text I'll try to give an overview
how serial console gettys on systemd work, and how TTYs of any kind are handled.

Let's start with the key take-away: in most cases, to get a login prompt on your serial prompt you
don't need to do anything. systemd checks the kernel configuration for the selected kernel console

https://en.wikipedia.org/wiki/Getty_(Unix)
http://www.freedesktop.org/wiki/Software/systemd
https://en.wikipedia.org/wiki/RS-232
https://0pointer.net/blog/projects/serial-console.html
https://www.raspberrypi.org/documentation/configuration/uart.md
https://www.rogerirwin.co.nz/linux-open-source/enabling-a-serial-port-console/

and will simply spawn a serial getty on it. That way it is entirely sufficient to configure your kernel
console properly (for example, by adding console=ttyS0 to the kernel command line) and that's
it. But let's have a look at the details:

In systemd, two template units are responsible for bringing up a login prompt on text consoles:

1. getty@.service is responsible for virtual terminal (VT) login prompts, i.e. those on
your VGA screen as exposed in /dev/tty1 and similar devices.

2. serial-getty@.service is responsible for all other terminals, including serial ports
such as /dev/ttyS0. It differs in a couple of ways from getty@.service: among
other things the $TERM environment variable is set to vt102 (hopefully a good default for
most serial terminals) rather than linux (which is the right choice for VTs only), and a
special logic that clears the VT scrollback buffer (and only work on VTs) is skipped.

Virtual Terminals

Let's have a closer look how getty@.service is started, i.e. how login prompts on the virtual
terminal (i.e. non-serial TTYs) work. Traditionally, the init system on Linux machines was
configured to spawn a fixed number login prompts at boot. In most cases six instances of the getty
program were spawned, on the first six VTs, tty1 to tty6.

In a systemd world we made this more dynamic: in order to make things more efficient login
prompts are now started on demand only. As you switch to the VTs the getty service is instantiated
to getty@tty2.service, getty@tty5.service and so on. Since we don't have to
unconditionally start the getty processes anymore this allows us to save a bit of resources, and
makes start-up a bit faster. This behaviour is mostly transparent to the user: if the user activates a
VT the getty is started right-away, so that the user will hardly notice that it wasn't running all the
time. If he then logs in and types ps he'll notice however that getty instances are only running for
the VTs he so far switched to.

By default this automatic spawning is done for the VTs up to VT6 only (in order to be close to the
traditional default configuration of Linux systems)[1]. Note that the auto-spawning of gettys is only
attempted if no other subsystem took possession of the VTs yet. More specifically, if a user makes
frequent use of fast user switching via GNOME he'll get his X sessions on the first six VTs, too,
since the lowest available VT is allocated for each session.

Two VTs are handled specially by the auto-spawning logic: firstly tty1 gets special treatment: if
we boot into graphical mode the display manager takes possession of this VT. If we boot into multi-
user (text) mode a getty is started on it -- unconditionally, without any on-demand logic[2].

Secondly, tty6 is especially reserved for auto-spawned gettys and unavailable to other subsystems

such as X[3]. This is done in order to ensure that there's always a way to get a text login, even if due
to fast user switching X took possession of more than 5 VTs.

Serial Terminals

Handling of login prompts on serial terminals (and all other kind of non-VT terminals) is different
from that of VTs. By default systemd will instantiate one serial-getty@.service on the

main kernel[4] console, if it is not a virtual terminal. The kernel console is where the kernel outputs
its own log messages and is usually configured on the kernel command line in the boot loader via an
argument such as console=ttyS0[5]. This logic ensures that when the user asks the kernel to
redirect its output onto a certain serial terminal, he will automatically also get a login prompt on it
as the boot completes[6]. systemd will also spawn a login prompt on the first special VM console

https://en.wikipedia.org/wiki/Fast_user_switching
https://en.wikipedia.org/wiki/Virtual_console

(that's /dev/hvc0, /dev/xvc0, /dev/hvsi0), if the system is run in a VM that provides
these devices. This logic is implemented in a generator called systemd-getty-generator that is run
early at boot and pulls in the necessary services depending on the execution environment.

In many cases, this automatic logic should already suffice to get you a login prompt when you need
one, without any specific configuration of systemd. However, sometimes there's the need to
manually configure a serial getty, for example, if more than one serial login prompt is needed or the
kernel console should be redirected to a different terminal than the login prompt. To facilitate this it
is sufficient to instantiate serial-getty@.service once for each serial port you want it to

run on[7]:

systemctl enable serial-getty@ttyS2.service
systemctl start serial-getty@ttyS2.service

And that's it. This will make sure you get the login prompt on the chosen port on all subsequent
boots, and starts it right-away too.

Sometimes, there's the need to configure the login prompt in even more detail. For example, if the
default baud rate configured by the kernel is not correct or other agetty parameters need to be
changed. In such a case simply copy the default unit template to /etc/systemd/system and
edit it there:

cp /usr/lib/systemd/system/serial-getty@.service /etc/systemd/system/serial-
getty@ttyS2.service
vi /etc/systemd/system/serial-getty@ttyS2.service
 now make your changes to the agetty command line ...
ln -s /etc/systemd/system/serial-getty@ttyS2.service
/etc/systemd/system/getty.target.wants/
systemctl daemon-reload
systemctl start serial-getty@ttyS2.service

This creates a unit file that is specific to serial port ttyS2, so that you can make specific changes
to this port and this port only.

And this is pretty much all there's to say about serial ports, VTs and login prompts on them. I hope
this was interesting, and please come back soon for the next installment of this series!

Footnotes

[1] You can easily modify this by changing NAutoVTs= in logind.conf.

[2] Note that whether the getty on VT1 is started on-demand or not hardly makes a difference, since VT1 is the default
active VT anyway, so the demand is there anyway at boot.

[3] You can easily change this special reserved VT by modifying ReserveVT= in logind.conf.

[4] If multiple kernel consoles are used simultaneously, the main console is the one listed first in
/sys/class/tty/console/active, which is the last one listed on the kernel command line.

[5] See kernel-parameters.txt for more information on this kernel command line option.

[6] Note that agetty -s is used here so that the baud rate configured at the kernel command line is not altered and
continued to be used by the login prompt.

[7] Note that this systemctl enable syntax only works with systemd 188 and newer (i.e. F18). On older versions
use ln -s /usr/lib/systemd/system/serial-getty@.service
/etc/systemd/system/getty.target.wants/serial-getty@ttyS2.service ; systemctl
daemon-reload instead.

https://www.kernel.org/doc/Documentation/kernel-parameters.txt
http://www.freedesktop.org/software/systemd/man/logind.conf.html
http://www.freedesktop.org/software/systemd/man/logind.conf.html
http://www.freedesktop.org/software/systemd/man/systemd-getty-generator.html
http://www.freedesktop.org/wiki/Software/systemd/Generators

LED Indicators on the UART RX/TX

https://forums.parallax.com/discussion/153140/tx-rx-activity-light-circuit

I see there are some basic requirements:
1. The circuit must not interfere with normal operation of the serial port.
2. I usually run at 115200 baud.
3. I want to at least be able to see the LED flash with the worst case character. In this case
sending 8 1's. So one sees only the start bit. Of course the LED is brighter with characters
that have more 0's.

1. The gain of my 2N3906 PNP transistors is about 180. With a base resistor of 10KΩ the
current through the LED is self limited so the 330Ω resistor is not required. Better yet any
color LED from RED to BLUE work equally well.
2. The start bit is about 9uS wide. If the capacitor is to large it affects the fall time which
may cause bit errors. I find that 10nF is about right.
If you want to operate at a slower bit rate the capacitor can be proportionately larger.
3. There is no need for the 100Ω input resistor. In fact it just limits the charge on the
capacitor dimming the LED no mater what value I tried.

So my conclusion is to just use the 4 parts:
2N3906, 10nF, 10KΩ, and the 1N4148 signal diode.

Have fun with this.

http://www.redrok.com/Diode_Silicon_1N4148_100V_0.3A_DO-35.pdf
http://www.redrok.com/PNP_2N3906_-40V_-0.2A_0.625W_Hfe40_TO-92.pdf
http://www.redrok.com/PNP_2N3906_-40V_-0.2A_0.625W_Hfe40_TO-92.pdf
https://forums.parallax.com/discussion/153140/tx-rx-activity-light-circuit

Final

https://projects-raspberry.com/raspberry-pi-serial-console-with-max3232cpe/

So in this short tutorial, I’ll show you how to use a MAX3232CPE transceiver to safely
convert the normal UART voltage levels to 3.3V accepted by Raspberry Pi, and connect to
the Pi using Putty. This is what you’ll need:

• Raspberry Pi unit
• Serial port in your PC or USB to serial -adapter
• MAX3232CPE or similar RS-232 to 3.3V logic level transceiver
• 5 x 0.1 uF capacitors (I used plastic ones)
• Jumper wires and breadboard
• Some type of female-female adapter

The last item is needed to connect male-male jumper wires to RaspPi GPIO pins. I had a
short 2×6 pin extension cable available and used that, but an IDE cable and other types
ribbon cable work fine as well. Just make sure it doesn’t internally short any of the
connections – use a multimeter if in doubt!

The connections on Pi side are rather straightforward. We’ll use the 3.3V pin for power –
the draw should not exceed 50 mA, but this should not be an issue, since MAX3232CPE
draws less than 1 mA and the capacitors are rather small. GND is also needed, and the
two UART pins, TXD and RXD.

Using MAX3232CPE for 3.3V UART
The MAX3232CPE is very much like it’s 5V sister model, MAX232. It uses a few
capacitors to deliver true +-12V RS-232 signalling on one end, and 3.3V signalling on the

https://projects-raspberry.com/raspberry-pi-serial-console-with-max3232cpe/

other. I’m not going to cover the internals in detail this time, please either refer to the
datasheet or my previous tutorial discussing this same chip.

Above you can see one rather compact way to wire the MAX3232. The orange, white,
green and black wires come from Raspberry Pi and provide power and data lines. The red,
brown and blue wires go to the RS-232 port – see the illustration on right for connections
on this side.

Update: The RS-232 connection diagram is from the side you’d solder the wires from
(“back side” of the connector), and wired so you can connect a PC USB serial adapter to
Raspberry Pi. If you’d like to talk to serial peripherals from Pi instead, RX/TX wires need to
be reversed.

Before you connect the Pi, check with a voltmeter that GND from Raspberry Pi and GND
from RS-232 do not differ from each other too much (a few millivolts is usually OK),
otherwise you may risk a ground loop and damage to your equipment!

Using Putty to connect to Raspberry Pi
After you’ve made all the connections, double check the connections once more, maybe
even check the this full sized photo. If everything looks OK, power up the Pi and plug in
the RS-232 cable.

Now all you need to do is to fire up Putty, change connection type to “Serial”, enter your
serial COM port, and then access the “Serial” settings (red highlight on the right image).

http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html
http://codeandlife.com/wp-content/uploads/2012/07/main.jpg
http://codeandlife.com/2012/04/12/3-3v-uart-with-max3232cpe/
http://www.datasheetcatalog.org/datasheets/270/497537_DS.pdf
http://www.datasheetcatalog.org/datasheets/270/497537_DS.pdf

https://codeandlife.com/2012/04/12/3-3v-uart-with-max3232cpe/

Before diving right into SPI communications for my SD tutorial, I wanted to have a 3.3V
development platform that could output some meaningful status information, not just light a
LED if something goes wrong. In this post, I will outline the basic testing platform that will
be used in the upcoming part 3 of that tutorial, and discuss a little about UART on AVR in
the progress. Here’s what we’ll build:

If you want to build it yourself, you’ll need:

• ATtiny2313 or other AVR chip with UART pins (RX/TX) separate from SPI pins
(MOSI/MISO/SCK)

• 20 MHz crystal (other speeds will work, too) and ~27 pF capacitors
• 4k7 pullup resistor for ATtiny2313 RESET pin
• 3.3V regulator such as LD1086V33 or some other 3.3V voltage source
• 2 filtering caps for the regulator input/output sides, 10 uF
• MAX3232CPE or similar RS-232 transceiver that works on a 3.3V voltage
• RS-232 port on your computer or a USB to RS-232 dongle
• RS-232 to breadboard connector (home-soldered example seen above)

Crystal can be left out if the internal oscillator is calibrated accurately enough for RS-232
timings (less than 1 % error). Also, you can build this setup with a 5V voltage source and
normal MAX232, but that combination cannot communicate directly with an SD card using
level conversion.

http://www.datasheetcatalog.org/datasheets/270/497537_DS.pdf
http://codeandlife.com/2012/04/07/simple-fat-and-sd-tutorial-part-2/
https://codeandlife.com/2012/04/12/3-3v-uart-with-max3232cpe/
http://codeandlife.com/wp-content/uploads/2012/04/breadboard.jpg

A Word on Wiring

I assume that you have prior experience on wiring a 6-pin programming header to a
ATtiny2313 and know the basics of regulators. If in doubt, you can refer to my USB tutorial
part 1 which covers the 3.3V regulator covered here in more detail. Here’s one good order
to do this:

1. Start by wiring >5V voltage source to regulator inputs. Add a filtering cap between
the VIN and GND.

2. Connect regulator output (green wire in my setup) to breadboard VCC power rail,
and GND to GND. Add another filtering cap there between VCC and GND.

3. Turn on power for a moment to confirm with a multimeter that you have 3.3V at
power rails

4. Wire the ATtiny2313 with power and RESET pullup, then wire the 6-pin
programming header

5. Connect a programmer and check that the chip responds
6. Add a crystal and 27 pF caps on both sides connected to ground. Wire the crystal to

ATtiny2313 XTAL pins
7. Update fuses – for ATtiny2313 the 20 MHz crystal the low fuse should be FE
8. You could flash a simple LED blinker at this point to see if the crystal is working OK

RS-232 with MAX3232CPE
The MAX232 and it’s pin-compatible 3V version, MAX3232 is basically a nice level shifting

http://codeandlife.com/2012/01/22/avr-attiny-usb-tutorial-part-1/
http://codeandlife.com/2012/01/22/avr-attiny-usb-tutorial-part-1/
http://codeandlife.com/wp-content/uploads/2012/04/wiring.jpg

circuit designed to convert the +-12V lines from RS-232 into TTL-compatible 5V (232) or
3.0-5.5V (3232) levels. To reach the higher (and lower) voltages, it uses charge pumps
and four 0.1 uF (standard MAX232 needs 1.0 uF) capacitors, plus one more for VCC
stabilization. Here’s the pinout and logical diagram:

So basically we put a capacitor between C1+ and C1-, another between C2+ and C2-,
third between VS+ and ground, fourth between VS- and ground, and finally the fifth
between VCC and ground. We will only be using one of the two transceivers, so pins 7, 8,
9 and 10 are not connected. The TX and RX are wired as follows:

• ATtiny TXD (pin 3, green jumper wire) is wired to T1IN (pin 11)
• ATtiny RXD (pin 2, white jumper wire) is wired to R1OUT (pin 12)
• RS-232 “Receive” (pin 2, the red wire) is wired to T1OUT (with a green jumper wire)
• RS-232 “Transmit” (pin 3, the brown wire) is wired to R1IN (with a white jumper

wire)

This is consistent with the following logic: ATtiny is wired to “TTL/CMOS” side of MAX3232,
i.e. to T1IN and R1OUT (right schematic above), and RS-232 to the other side, T1OUT
and R1IN, respectively. The ATtiny “TX” and “RX” correspond to MAX3232 T/R lettering,
but the RS-232 does not – you can think the RS-232 “Receive” pin (pin 2) as computer’s
way of saying “I will receive data from this pin” and “Transmit” pin as “I will transmit data
from this pin”. In other words, “Receive” means “Transmit into this” and “Transmit” means
“Receive from here”. Confusing, isn’t it?

In any case, after you’ve read the above two times, consult the big picture above again to
verify that you got it correctly, and proceed to the code part. :)

UART code in AVR
The ATtiny2313 datasheet section on UART (or “USART”, as they like to call it) is
surprisingly clear – it even contains example code on using it. Here’s a simple test
program that just echoes back everything that is sent over the RS-232:

#include <avr/io.h>

void USARTInit(unsigned int ubrr_value) { // is UBRR>255 supported?
 //Set Baud rate

http://codeandlife.com/wp-content/uploads/2012/04/breadboard-1024x731.jpg
http://codeandlife.com/wp-content/uploads/2012/04/max3232.png

 UBRRH = (unsigned char)(ubrr_value >> 8);
 UBRRL = (unsigned char)(ubrr_value & 255);
 // Frame Format: asynchronous, no parity, 1 stop bit, char size 8
 UCSRC = (1 << UCSZ1) | (1 << UCSZ0);
 //Enable The receiver and transmitter
 UCSRB = (1 << RXEN) | (1 << TXEN);
}

char USARTReadChar() { // blocking
 while(!(UCSRA & (1<<RXC))) {}
 return UDR;
}

void USARTWriteChar(char data) { // blocking
 while(!(UCSRA & (1<<UDRE))) {}
 UDR=data;
}

int main() {
 USARTInit(64); // 20 MHz / (16 * 19200 baud) - 1 = 64.104x

 while(1)
 USARTWriteChar(USARTReadChar()); // echo

 return 1;
}

Note that the “UBRR magic constant” 64 is correct for a 20 MHz crystal and baud rate of
19 200. Use the formula (int)(F_CPU / (16 * baudrate)) to calculate other alternatives. Note
that the rounding error should not exceed 1-2 % or it will not work, so all bit rates might not
work well with your particular crystal.

Compile and flash it to chip, and provided that you have installed your RS-232 drivers on
PC, you should be able to use Putty or some other terminal to connect. Note that pressing
<enter> will only send a carriage return, not a newline, so you’ll likely be stuck on the first
line of your terminal when typing any text.

Now that we’ve got everything working, it would be easy to modify the code to not just
echo everything back, but perhaps rot-13 encrypt everything, or do some other creative
thing. But that’s it for me today, it’s past midnight and I’m getting some sleep now.

http://en.wikipedia.org/wiki/Serial_port#Speed
http://codeandlife.com/wp-content/uploads/2012/04/putty.png

https://codeandlife.com/2012/07/01/raspberry-pi-serial-console-with-max3232cpe/

In addition to the audio, video, network and USB connectors, the Raspberry Pi also has 26
GPIO pins. These pins also include an UART serial console, which can be used to log in to
the Pi, and many other things. However, normal UART device communicate with -12V
(logical “1”) and +12V (logical “0”), which may just fry something in the 3.3V Pi. Even “TTL
level” serial at 5V runs the same risk.

So in this short tutorial, I’ll show you how to use a MAX3232CPE transceiver to safely
convert the normal UART voltage levels to 3.3V accepted by Raspberry Pi, and connect to
the Pi using Putty. This is what you’ll need:

• Raspberry Pi unit
• Serial port in your PC or USB to serial -adapter
• MAX3232CPE or similar RS-232 to 3.3V logic level transceiver
• 5 x 0.1 uF capacitors (I used plastic ones)
• Jumper wires and breadboard
• Some type of female-female adapter

The last item is needed to connect male-male jumper wires to RaspPi GPIO pins. I had a
short 2×6 pin extension cable available and used that, but an IDE cable and other types
ribbon cable work fine as well. Just make sure it doesn’t internally short any of the
connections – use a multimeter if in doubt!

The connections on Pi side are rather straightforward. We’ll use the 3.3V pin for power –
the draw should not exceed 50 mA, but this should not be an issue, since MAX3232CPE
draws less than 1 mA and the capacitors are rather small. GND is also needed, and the
two UART pins, TXD and RXD.

https://codeandlife.com/2012/07/01/raspberry-pi-serial-console-with-max3232cpe/
http://codeandlife.com/wp-content/uploads/2012/07/main.jpg
http://codeandlife.com/wp-content/uploads/2012/07/rasppi.png

Using MAX3232CPE for 3.3V UART
The MAX3232CPE is very much like it’s 5V sister model, MAX232. It uses a few
capacitors to deliver true +-12V RS-232 signalling on one end, and 3.3V signalling on the
other. I’m not going to cover the internals in detail this time, please either refer to the
datasheet or my previous tutorial discussing this same chip.

Above you can see one rather compact way to wire the MAX3232. The orange, white,
green and black wires come from Raspberry Pi and provide power and data lines. The red,
brown and blue wires go to the RS-232 port – see the illustration on right for connections
on this side.

Update: The RS-232 connection diagram is from the side you’d solder the wires from
(“back side” of the connector), and wired so you can connect a PC USB serial adapter to
Raspberry Pi. If you’d like to talk to serial peripherals from Pi instead, RX/TX wires need to
be reversed.

Before you connect the Pi, check with a voltmeter that GND from Raspberry Pi and GND
from RS-232 do not differ from each other too much (a few millivolts is usually OK),
otherwise you may risk a ground loop and damage to your equipment!

http://codeandlife.com/2012/04/12/3-3v-uart-with-max3232cpe/
http://www.datasheetcatalog.org/datasheets/270/497537_DS.pdf
http://www.datasheetcatalog.org/datasheets/270/497537_DS.pdf
http://codeandlife.com/wp-content/uploads/2012/07/circuit2.jpg
http://codeandlife.com/wp-content/uploads/2012/07/rs232.png

Using Putty to connect to Raspberry Pi

After you’ve made all the connections, double check the connections once more, maybe
even check the this full sized photo. If everything looks OK, power up the Pi and plug in
the RS-232 cable.

Now all you need to do is to fire up Putty, change connection type to “Serial”, enter your
serial COM port, and then access the “Serial” settings (red highlight on the right image).

In the serial settings, make sure you have 8 bits, 1 stop bit, no parity and no flow control
before you connect. I initially had XON/XOFF flow control and got nothing but garbage, so
don’t forget this step!

Once the wiring and the settings are correct, you should be welcomed by the Raspberry Pi
login screen (note that chances are the login text is already gone when you first connect,
you’ll need to press enter a few times to get the login text again). Quite nice! Also, if you
disable the login (Google for details), you can use the ttyAMA0 serial device for anything
you like (for example, outputting logs or connecting to another device with RS-232
connection).

http://codeandlife.com/wp-content/uploads/2012/07/settings1.png
http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html
http://codeandlife.com/wp-content/uploads/2012/07/main.jpg
http://codeandlife.com/wp-content/uploads/2012/07/putty.png
http://codeandlife.com/wp-content/uploads/2012/07/screencap2.png

RS232 – 10 PIN CONNECTOR

From the back side

MALE

	RPI
	RPI 2B
	RPI 4B
	Systemd Enable Serial Port on RPI
	Raspberry Pi
	Linux devices with systemd
	systemd for Administrators, Part XVI
	Gettys on Serial Consoles (and Elsewhere)
	Virtual Terminals
	Serial Terminals

	LED Indicators on the UART RX/TX
	Using MAX3232CPE for 3.3V UART
	Using Putty to connect to Raspberry Pi
	A Word on Wiring
	RS-232 with MAX3232CPE
	UART code in AVR
	Using MAX3232CPE for 3.3V UART
	Using Putty to connect to Raspberry Pi

	RS232 – 10 PIN CONNECTOR

